PRISM 2021
- Title:
- PRISM 2021
- When:
- Tue, 14. December 2021, 15:00 h - 16:30 h
- Category:
- Workshop
Description
Programma cerimonia di consegna del premio PRISM
La cerimonia di premiazione si terrà in diretta Facebook sulla pagina @CNRsocialFB.
Ore 15.00 Presentazione del Premio PRISM
Ore 15.15 Processing and applications of two-dimensional nanosheet inks, Valeria Nicolosi (Trinity College Dublin, Ireland) - Premio PRISM Senior
Ore 15.45 Probing driven quantum phases of high-temperature superconductors with ultrafast x-rays, Matteo Mitrano (Harvard University, USA)- Premio PRISM Junior
Ore 16.15 Premiazione
Ore 16.30 Conclusione
Abstract
Processing and applications of two-dimensional nanosheet inks
Valeria Nicolosi
Trinity College Dublin, School of Chemistry, CRANN Institute, AMBER and I-Form Centres, Dublin 2, Ireland
Liquid phase exfoliation has been proved to be a cheap, scalable method for the mass production of 2D sheets. This talk will first discuss the galaxy of existent layered materials, with emphasis on synthesis, liquid-phase exfoliation, and characterization, focussing on some key applications recently developed in our laboratories, ranging from energy storage to printed electronics. We will for example discuss how two-dimensional Ti3C2 (MXene) can be formulated in aqueous and organic viscous inks for extrusion printing and inkjet printing, respectively, and demonstrate direct MXene printing on various substrates. The additive- and binary solvent-free MXene inks do not show coffee ring effect, enabling high-resolution printing without substrate pre-treatment. The resulting all-MXene printed micro-supercapacitors showcase excellent charge storage performance, including areal capacitance up to 43 mF/cm2 and volumetric capacitance up to 562 F/cm3 in protic gel electrolyte, coupled with long lifetime and good flexibility. We also show examples of all-inkjet-printed MXene arrays for ohmic resistors. The versatile direct-ink-printing technique highlights the promise of MXene functional inks for scalable fabrication of easy-to-integrate components of printable electronics. We will also discuss how MXenes can be used as a conductive binder for silicon electrodes produced by a simple and scalable slurry-casting technique without the need of any other additives. The nanosheets form a continuous metallic network, enable fast charge transport and provide good mechanical reinforcement for the thick electrode (up to 450 µm). Consequently, record high areal capacity anodes (up to 23.3 mAh cm−2) can be demonstrated. EMI shielding applications will also be discussed.
Probing driven quantum phases of high-temperature superconductors with ultrafast x-rays
Matteo Mitrano
Department of Physics, Harvard University, 17 Oxford Street, 02138 Cambridge, MA, USA
In this talk, I will present our recent research on the manipulation of quantum materials with femtosecond laser pulses. Ultrafast optical excitation, especially when resonant to specific lattice modes, has recently emerged as a powerful means to control and induce new quantum phases in solids. A most striking example is represented by the discovery of dynamically driven superconductivity at temperatures far above the equilibrium critical temperature Tc. While this phenomenon has been observed in a variety of systems ranging from copper oxides to organic molecular metals, the microscopic physics of these dynamics is still largely unexplored. By focusing on the paradigmatic example of a light-driven copper oxide, I will show how time-resolved X-ray spectroscopy provides novel insights on the disruption of competing orders and the renormalization of effective electronic interactions. Further, I will discuss how recent advances in time-resolved resonant inelastic X-rays scattering (trRIXS) will enable probing light-driven modifications of the spin fluctuation spectrum.
Valeria Nicolosi è attualmente Professoressa al Trinity College di Dublino, dove detiene la Cattedra di Materiali Nanostrutturati e Microscopia Avanzata presso la School of Chemistry.
Ha conseguito la Laurea in Chimica nel 2001 presso l'Università di Catania e il Dottorato nel 2006 presso il Trinity College di Dublino.
Si è trasferita nel 2008 all'Università di Oxford nel quadro di un contratto Marie Curie ed è poi ritornata al Trinity College nel 2012 con un Grant ERC.
I suoi campi di interesse riguardano la preparazione e caratterizzazione strutturale tramite microscopia elettronica ad altissima risoluzione di materiali a bassa dimensionalità per lo studio della loro struttura atomica e dei difetti strutturali, collegandoli alle loro proprietà chimico-fisiche fondamentali.
Matteo Mitrano si è laureato in Fisica nel 2010 presso l'Università “Sapienza” di Roma.
Successivamente si è trasferito in Germania dove ha lavorato nell’Istituto per la Struttura e la Dinamica della Materia "Max Planck" di Amburgo, conseguendo il titolo di Dottore di Ricerca nel 2015.
Dal 2016 al 2020 ha continuato la sua ricerca all’Università dell’Illinois ad Urbana-Champaign (USA) grazie ad una borsa Feodor Lynen della fondazione Alexander von Humboldt.
La sua attività di ricerca sperimentale si occupa principalmente dei problemi fondamentali nella fisica dei materiali fortemente correlati e del controllo delle loro proprietà fuori dall'equilibrio con l’utilizzo di avanzate tecniche di spettroscopia e scattering ultraveloci.
Come riconoscimento per i suoi studi nel 2019 è stato insignito dello LCLS Young Investigator Award dello SLAC National Accelerator Laboratory.