KETs@ISM 2017

Key Enabling Technologies at Istituto di Struttura della Materia

Advanced Materials

Micro-Nano Electronics

Nano-Technology
KETs@ISM 2017

Key Enabling Technologies at Istituto di Struttura della Materia

A cura di Maria Rita Bruni, Patrizia Dolce, Franca Rossi e Lorenzo Avaldi
Introduzione

L’iniziativa europea “KETs Skills Initiative” di Horizon 2020 ha selezionato un gruppo di sei tecnologie abilitanti (micro e nanoelettronica, nanotecnologie, biotecnologie industriali, materiali avanzati, fotonica e tecnologie di produzione avanzate) che trovano una vasta gamma di applicazioni come, per esempio, nello sviluppo di tecnologie a bassa emissione di carbonio, nel miglioramento dell’efficienza energetica e delle risorse, e nella creazione di nuovi prodotti medicali. Queste tecnologie hanno un enorme potenziale per alimentare la crescita economica e creare posti di lavoro.

Il ruolo delle KETs è stato riconosciuto da tutte le regioni italiane nello sviluppo dei loro documenti sulle Strategie di Specializzazione Intelligente, S3, che mirano a individuare nuove traiettorie tecnologiche per lo sviluppo regionale, mediante il coinvolgimento di tutti gli attori del processo di innovazione (università, istituti di ricerca, aziende ed associazioni di categoria) e sfruttando l’esperienza ed eccellenza esistenti per affrontare le principali sfide sociali.

L’Istituto di Struttura della Materia (ISM) del CNR, con le sue 120 unità di personale e le loro competenze può contribuire ad accelerare lo sfruttamento delle KETs nelle tre regioni in cui si trovano le sedi dell’Istituto: Lazio (Area della Ricerca di Tor Vergata e Area della Ricerca di Montelibretti, Basilicata (Area della Ricerca di Tito Scalo) e Friuli Venezia Giulia (Area Science Park, Basovizza).

Tra le sei tecnologie abilitanti quelle che vedono l’ISM all’avanguardia sia per l’avanzamento della conoscenza che per le applicazioni innovative sono le nanotecnologie, i materiali avanzati e micronanoelettronica. Questo opuscolo raccoglie alcuni esempi delle competenze e degli sviluppi previsti in queste settori da ISM, per fornire un portfolio disponibile a tutte le persone coinvolte nel processo di innovazione, dagli organi decisionali, i distretti tecnologici, i cluster tecnologici regionali e nazionali alle PMI e laboratori di R&S pubblici e privati.

Introduction

The EU “KETs Skills Initiative” Horizon 2020 has selected a group of six technologies (micro and nanoelectronics, nanotechnology, industrial biotechnology, advanced materials, photonics, and advanced manufacturing technologies) that have a wide range of applications such as developing low carbon energy technologies, improving energy and resource efficiency, and creating new medical products. These technologies have huge potential to fuel economic growth and create employment.

The role of the KETs has been recognized by all the Italian regions in the setting up of their Smart Specialisation Strategies, S3, which aim to identify new technological trajectories for the regional growth by engaging all the actors of the innovation process (Universities, Research Institutions, Companies and Trade Associations) and exploiting the existing expertise and excellence to tackle the main social challenges.

CNR- Istituto di Struttura della Materia (ISM) with its staff of 120 people and their expertises can contribute to accelerate the exploitation of the KETs in the three regions where the branches of the Institute are located: Lazio (Area della Ricerca - Tor Vergata and Area della Ricerca - Montelibretti, Basilicata (Area della Ricerca - Tito Scalo) and Friuli Venezia Giulia (Area Science Park, Basovizza).

Among the six technologies the ones which see the ISM operating at the leading edge of knowledge and innovation are Nanotechnology, Advanced Materials and Micro-Nanoelectronics. This booklet collects examples of the established expertises and the foreseen developments in these technologies by ISM, to provide a portfolio available to all the people involved in the innovation process, from the decision making bodies, the technological districts, the regional and national technological clusters, to SME’s and public and private R&D laboratories.
Nanoparticelle Magnetiche

Le nanoparticelle magnetiche (MNP) stanno ricevendo molto interesse per diverse applicazioni quali i nuovi magneti permanenti a ridotto contenuto di terre rare, il termoelettrico avanzato e, dopo opportune funzionalizzazioni, la biomedicina (per Imaging, ipertermia magnetica e biosensori). Presso l’ISM esistono consolidate competenze nella sintesi chimica di MNP a struttura complessa (vedi H2020 Progetto FET Proactive MAGENTA 2017-2021) quali le NP di ossidi e leghe ad alta anisotropia, le NP core/shell con bifasi magnetiche (ferro-, ferri- e anti-ferrromagnetiche) o MNP cave. Tali sistemi mostrano proprietà magnetiche controllate e riproducibili in quanto, mediante opportune strategie di sintesi, si esercita un rigoroso controllo sulla composizione chimica, sulla struttura, sulla dimensione, sulla distribuzione di dimensioni e sulla forma, ovvero sui principali fattori strutturali e/o microstrutturali che determinano il comportamento magnetico (anisotropia magnetica, saturazione e coercitività) utile per le suddette applicazioni.

Staff: Elisabetta Agostinelli, Aldo Capobianchi, Sara Laureti, Davide Peddis, Alberto Maria Testa, Gaspare Varvaro

Contact: nm2@ism.cnr.it

Magnetic Nanoparticles

Magnetic nanoparticles (MNP) have attracted much attention as they can be used in different applications such as new permanent magnets with reduced content of rare earths, advanced thermoelectrics and, after appropriate functionalization, biomedicine (for Magnetic Resonance Imaging, magnetic hyperthermia and biosensors). At ISM an established expertise is available in chemical synthesis of MNP with complex structures (H2020 FET-Proactive Project MAGENTA 2017-2021) such as oxides and high anisotropy alloys, magnetic bi-phase core/shell (Ferro-, Ferri- and antiferromagnetic) or hollow NP. These systems exhibit controlled and reproducible magnetic properties because, through suitable synthetic strategies, a strict control is obtained on the chemical composition, the structure, the size of the nanostructures, their size distribution and shape, i.e. on the most important structural and/or microstructural properties that determine the magnetic behavior (magnetic anisotropy, saturation and coercivity) to be exploited for the above applications.

Staff: Elisabetta Agostinelli, Aldo Capobianchi, Sara Laureti, Davide Peddis, Alberto Maria Testa, Gaspare Varvaro

Contact: nm2@ism.cnr.it

Immagine TEM di nanoparticelle cubiche CoFe$_2$O$_4$ di dimensione media = 19 nm
TEM image of cubic CoFe$_2$O$_4$ nanoparticles with average size = 19 nm.

Immagine HR-TEM di nanoparticelle ordinate fct FePt di 12 nm con coercitività pari a 5.5 kOe (T_{room}).
HR-TEM image of 12 nm fct ordered FePt nanoparticles with coercivity of 5.5 kOe (T_{room}).
Film e Eterostrutture Magnetiche

L’ISM svolge una importante attività nel campo dei film sottili ed eterostrutture magnetiche di interesse per applicazioni in settori quali l’immagazzinamento dati, la sensoristica, la biomedicina. Studi recenti sono rivolti a sistemi per dispositivi spintronici di nuova generazione (basati su materiali antiferromagnetici e/o ossidi metallici come elementi attivi), di cui si studiano gli effetti di interfaccia e di confinamento spaziale.

L’attività di ricerca si estende dalla fabbricazione di materiali innovativi ingegnerizzati su scala nanometrica, alla comprensione dei processi che governano le proprietà fisiche e alla loro correlazione con le caratteristiche morfo-strutturali. Mediane la tecnica di PLD si depositano leghe metalliche (es. CoFe, CoPt, FeNi), ossidi magnetici (es. CoO, NiO, CoFe₂O₄) multistrati con accoppiamento di scambio all’interfaccia (es. CoFe/NiO, CoPt/NiO); tecniche magnetometriche avanzate (in funzione del campo, temperatura e angolo) vengono applicate per ottimizzare le proprietà magnetiche e magnetoresistive di tali materiali in funzione della loro applicazione.

Staff: Elisabetta Agostinelli, Aldo Capobianchi, Sara Laureti, Davide Peddis, Alberto Maria Testa, Gaspare Varvaro
Contact: nm2@ism.cnr.it

Magnetic Films and Heterostructures

An important activity carried out at ISM is in the field of magnetic thin films and heterostructures for technological applications such as data storage, sensors, biomedicine. The most recent studies are directed to systems for the next generation spintronic devices (based on antiferromagnetic materials and/or metal oxides as active elements), by addressing, in particular, the interface effects in hetero-structures and size confinement.

The research activity spans over the production of engineered advanced materials modulated at the nanoscale, through the understanding of the processes governing the physical properties and their correlation with morphological and structural features. By the PLD technique, metal alloys (eg. CoFe, CoPt, FeNi), magnetic oxides (eg. CoO, NiO, CoFe₂O₄) and exchange coupled multilayers (eg. CoFe/NiO, CoPt/NiO) are deposited; advanced magnetometric measurements (as a function of the field, temperature and angle) are applied to optimize the magnetic and magnetoresistive properties of such materials in view of their technological application.

Staff: Elisabetta Agostinelli, Aldo Capobianchi, Sara Laureti, Davide Peddis, Alberto Maria Testa, Gaspare Varvaro
Contact: nm2@ism.cnr.it

Immagini TEM Bright field (a) e HR-TEM (b) di strati sottili CoFe(100) altamente orientati, depositati a temperatura ambiente mediante Pulsed Laser Deposition.

Bright field TEM (a) and HR-TEM (b) images of a highly textured CoFe (100) thin layer deposited at room temperature by Pulsed Laser Deposition.

Cicli di isteresi del film CoFe (100) misurato mediante VSM vettoriale a temperatura ambiente, in funzione dell’angolo di applicazione del campo magnetico. Vector-VSM hysteresis loops at room temperature of a CoFe (100) as a function of the angle of the applied field.
Nanotubi di Carbonio e Grafene

I nanocomposti a base di NanoTubi di Carbonio (CNTs) e nanoparticelle (NPs) metalliche o di leghe metalliche distribuite all’interno o all’esterno delle cavità dei CNTs e il grafene possono essere utilizzati in diversi campi come la catalisi (per la loro ampia superficie), l’elettronica (le NPs modificano le proprietà elettroniche), il drug delivery, le punte per scanning probe microscopies.

Da oltre un decennio nell’ISM si è consolidata una competenza nella sintesi di tali sistemi, mediante la sintesi effettuata a bassa temperatura che può essere facilmente estesa per inserire anche molecole organiche come coloranti e farmaci. Il metodo, inoltre, consente il riempimento di qualunque tipo di cavità, anche ordinata su un substrato.

Più di recente è stata sviluppata la sintesi di grafene ossido, partendo da grafite e applicando tecniche quali la liofilizzazione dei prodotti, da noi sviluppata e introdotta nel 2007 per i CNTs. Questa tecnica permette di ottenere un grafene ossido e un grafene ridotto con altissima superficie per grammo (600 m²/g).

Staff: Aldo Capobianchi, Paolo Rocchi.

Contact: aldo.capobianchi@ism.cnr.it

Carbon Nanotubes and graphene

Nanocomposites based on Carbon Nano-Tubes CNTs and metal or metal alloy nanoparticles (NPs) distributed inside or outside the cavity of CNTs and graphene can be used in different fields such as catalysis (for their large surface area), electronics (the NPs alter the electronic properties), drug delivery, tips for scanning probe microscopies, etc.

The expertise in the synthesis of such systems has been established at ISM since a decade. The synthesis is carried out at low temperature, thus it can also be easily extended to organic molecules such as dyes and drugs. This method also allows the filling of any type of cavity, including ordered nanocavities on a substrate.

More recently the synthesis of graphene oxide was also developed starting from graphite and applying the same techniques, such as freeze-drying of products, we have developed and introduced since 2007 for CNTs. This technique allows to obtain graphene oxide and, starting from this product, a reduced graphene with a remarkably high value of surface area per gram (600 m²/g).
Nanoparticelle come nuovi sensori ultra-sensibili

Il gruppo di ricerca del laboratorio EFSL (Eurofel Support Laboratory) sta effettuando studi su strutture plasmoniche (nanoparticelle) combinate con strutture eccitoniche quali nanofili e aggregati organici. La ricerca in questo campo può portare alla scoperta di materiali avanzati con proprietà ottiche uniche grazie al forte accoppiamento tra le strutture plasmoniche ed eccitoniche (plexitoni). L’attività di ricerca di EFSL è anche coinvolta nel campo delle nanostrutture magneto-plasmoniche. Questi materiali sono in grado di potenziare gli effetti magneto-ottici, che forniscono ulteriori gradi di libertà nel controllo della luce su scala nanometrica, permettendo di progettare nuovi sensori ultra-sensibili.

Nanoparticles as ultra-responsive sensor devices

The Eurofel Support Laboratory research team is performing studies on the combination of plasmonic structures (nanoparticles) with excitonic underlying structures such as nanowires and organic aggregates. Research in this field can lead to the discovery of advanced materials with unique optical properties due to the strong coupling between the plasmonic and excitonic (plexitonic) structures. The Eurofel Support Laboratory research activity is also involved in the field of magneto-plasmonic nanostructures. These materials enhance the magneto-optical effects, which introduce additional degrees of freedom in the control of light at the nano-scale, allowing to design new ultra-responsive sensor devices.

Staff: D. Catone, S. Colonna, P. O’Keeffe, A. Paladini, F. Toschi, S. Turchini
Contact: daniele.catone@ism.cnr.it
Fotosintesi Artificiale

Trasformare direttamente l’energia solare in un combustibile chimico permetterebbe di affrontare in modo efficace e sostenibile la crescente richiesta mondiale di energia. Questo processo è pulito, non produce gas serra e consente di immagazzinare grandi quantità di energia per usarla dove e quando è più conveniente. Una tecnologia di questo tipo prende il nome di fotosintesi artificiale: un processo che imita la natura per mezzo di materiali prodotti dall’uomo. L’ISM è attivo nella sintesi di materiali avanzati che catalizzano la produzione di idrogeno o di altri combustibili chimici usando energia rinnovabile. Questi catalizzatori sono prodotti con metodi elettochimici o usando processi fotolitici innovativi basati su impulsi laser ultraveloci. I materiali così prodotti sono sottoposti a studi approfonditi, basati su radiazione di sincrotrone, spettroscopia ultraveloce e simulazioni ab initio, che ne caratterizzano le proprietà chiave sia chimiche sia fisiche.

Artificial Photosynthesis

Direct conversion of solar energy into chemical fuel is a primary objective in the endeavor to address the globally growing energy demand in a sustainable way. This process is clean and carbon neutral, and a relevant amount of chemical energy can be stored and used when needed. A technologically relevant approach to the solar-to-chemical energy conversion process is referred to as artificial photosynthesis, which aims to emulate natural processes using man-made materials. ISM is able to synthesize advanced nanomaterials which catalyze the production of hydrogen or other chemical fuels from renewable energy resources. Active catalysts are prepared by using electrochemical techniques as well as innovative photolytic processes based on ultrafast laser pulses. ISM can also perform an in-depth investigation of the physical and chemical properties of such materials, based on synchrotron radiation, ultrafast spectroscopy and ab initio simulations.

Staff: G. Mattioli, F. Filippone, P. O’Keeffe, A. Paladini, A. Santagata, F. Toschi
Contact: giuseppe.mattioli@ism.cnr.it

Elettronii nei nanomateriali

Il comportamento degli elettroni nei nano materiali, molto differente da quello nei corrispondenti solidi tridimensionali, determina nuove proprietà elettroniche, magnetiche e spintroniche con alto potenziale applicativo. La linea di luce VUV-Photo-emisssion ad Elettra (Trieste), gestita da personale dell’ISM, è stata concepita come una facility di supporto alle attività di ricerca sperimentale del CNR e dell’utenza italiana ed internazionale nel campo della struttura elettronica dei nano materiali. Tramite l’impiego di luce di sincrotrone si effettuano mappature ad alta risoluzione energetica ed angolare delle bande elettroniche e della superficie di Fermi, così come dei livelli elettronici profondi. Queste informazioni consentono di determinare ad un livello fondamentale la relazione tra il comportamento elettronico e le proprietà funzionali macroscopiche di nano materiali quali graphene e altri sistemi bidimensionali, film magnetici e ad alto accoppiamento spin-orbitale.

Electrons in nanomaterials

The electronic behavior in nano-materials gives rise to novel electronic, magnetic and spintronic properties of high applicative potential without counterpart in the corresponding three-dimensional solids. The VUV-Photoemission beamline at Elettra (Trieste) is an ISM facility that supports experimental activities of CNR, Italian and international research groups in the field of the electronic structure of nano-materials. Synchrotron light is employed to probe with high energy and angular resolution the electronic bands, Fermi surface and core levels over a broad photon energy range. These studies provide the fundamental relations linking the electronic behavior of nano-materials and their macroscopic functional properties. Systems of particular interest are graphene and other two-dimensional materials, as well as films with high exchange and spin-orbit interactions.

Staff: Paolo Moras, Polina Sheverdyaeva

Contact: paolo.moras@ism.cnr.it

Evoluzione della struttura a bande del graphene sul renio con intercalazione di argento

Electronic band structure of graphene on renium upon silver intercalation

Superficie di Fermi di un film cristallino di cobalto cresciuto su un substrato di tungsteno

Fermi surface of a crystalline cobalt film grown on a tungsten substrate
In situ studies of organic solar cells

In the search for novel renewable energy sources an increasing interest is devoted to the development of innovative photovoltaic systems able to convert solar energy into electricity. Organic photovoltaic devices (OPV) are very promising for their low fabrication cost, low environmental impact and elevated flexibility. The research group at ISM applies non-conventional in-situ characterization tools to control, at the nanometer scale, the properties and stability of the organic materials constituting the active elements of the devices, aiming at a deeper understanding of the processes associated with the energetic conversion and the device aging, a knowledge that is the basis of novel realization strategies. As an example, the studies performed at ISM show that the introduction of plasmonic nanoparticles inside the photoactive layer of OPV devices allowing for an enhancement of the device efficiency also produces an improvement of the cell stability, allowing for better preservation of the photovoltaic performances over time.

Staff: Barbara Paci, Amanda Generosi, Valerio Rossi Albertini, Marco Guaragno

Contact: barbara.paci@ism.cnr.it

Controllo su scala nanometrica delle proprietà di interfaccia, di superficie e di bulk di celle OPV.

Nanoscale control of bulk, surface and interface properties of OPV devices.
Nuovi Coloranti “Smart”

Sono stati sviluppati nuovi materiali coloranti sostenibili, con proprietà ottiche ed elettroniche, ottenuti con elementi non rari e non tossici o comunque non pericolosi per l’ambiente; materiali per tecnologie fotovoltaiche DSSC (dye-sensitized solar cells), organiche (OPV) Bulk Hetero Junction (BHJ) o Layer by Layer; materiali basati su perovskiti ibride organi-che-inorganiche con ridotto o nullo contenuto di piombo, per celle (PSCs) fotovoltaiche anche in configurazione ibrida polimero/perovskite; materiali in grado di ampliare il range ed ottimizzare l’assorbimento solare (LSC, luminescent solar concentrators and PNP nanoparticelle plasmoniche) e la separazione della carica e che siano al contempo più stabili, più robusti, e ingegnerizzabili in configurazioni a giunzione multipla; composti metallo macrociclici π-coniugati come potenziali sistemi catalitici o mediatori redox o materiali elettrodi per la sostituzione di catalizzatori/materiali elettrodi costosi o non ambientalmente compatibili per la produzione di idrogeno e/o chemicals per via foto/bio/elettrochimica e più in generale per il campo delle “bioraffinerie”.

New Smart Dyes

New environmentally sustainable and non-hazardous dyes containing non-rare and non-toxic elements have been developed with optical and electronic properties, materials for photovoltaic technologies as DSSC (dye-sensitized solar cells), organic (OPV) Bulk Hetero Junction (BHJ) or Layer by Layer solar cells; materials based on organic-inorganic hybrid perovskites with reduced or zero lead content, for photovoltaic cells (PSCs) potentially in a polymer/perovskite hybrid configuration; solar absorption range-enlarging and charge separation-optimizing materials (LSC, luminescent solar concentrators and PNP plasmonic nano-particles) both more stable and more robust, suitable to be engineered in multiple-junction configurations; metal π-conjugated macrocyclic compounds as potential catalytic systems or redox mediators or electrode materials for the replacement of expensive or non-environmental friendly catalysts or electrode materials, for hydrogen and/or chemicals production via photo/bio/electrochemical routes and in generic terms for the “biorefineries” field.

Staff: Gianna Pennesi, Anna Maria Paoletti, Nicola Angelini, Gloria Zanotti, Sara Notarantonio

Contact: gianna.pennesi@ism.cnr.it

Polveri microcristalline di coloranti basati su metallo-macrocycle.

Different microcrystalline dye powders based on metalmacrocycle compounds.

Absorption sketcch of an organic dye onto TiO₂ in a Dye Sensitized Solar Cell.

Schema dell’assorbimento di un colorante organico su TiO₂ per Celle solari a colorante.
Additive-Manufacturing di metalli

L’Additive Manufacturing (AM) o stampa 3D di componenti metallici rappresenta uno dei sistemi avanzati di manifattura che, per le sue enormi prospettive future di sviluppo e alta sostenibilità ambientale, viene continuamente richiamato nei documenti di indirizzo della Commissione Europea. La tecnologia si basa maggiormente sulla scansione di un fascio laser che, agendo su un letto di polveri aventi composizione e forma controllata, permette la costruzione, strato a strato, di componenti a geometria anche molto complessa. L’ISM con le sue competenze sulla interpretazione, modelling e caratterizzazione dell’interazione laser-materia è coinvolta nella ricerca di nuovi materiali e nella determinazione dei fenomeni che governano la formazione delle difettività indotte durante il processo. Le attività e metodologie di ricerca adottate hanno messo in evidenza come tali componenti presentino proprietà micro-strutturali e difettive legate, prevalentemente, ai gradienti termici che entrano in gioco e che possono determinare sia lo sviluppo di nuovi sistemi e strutture che il loro specifico campo di applicazione.

Staff: P. Dolce, A. Guarnaccio, M. L. Pace, D. Mollica, G. P. Parisi, A. Santagata
Contact: antonio.santagata@ism.cnr.it

Immagine estratta da / Figure from: Additive Manufacturing in FP7 and Horizon 2020 - Report from the EC Workshop on Additive Manufacturing
June 18th, 2014 – Brussels (Belgium)

Tipica microstruttura di un componente in acciaio 316L ottenuto per AM.
Typical microstructure of an 316L steel item printed by AM

Additive-Manufacturing of metals

Additive Manufacturing (AM) or 3D printing of metallic components is one of the most promising advanced methods of manufacturing for products of the future. The guideline documents of the European Commission always refer to this technology for its enormous perspectives in being developed for both its environmental sustainability and ability in realizing new kinds of products. This technology is based on the scanning of a laser beam which acting on a powder bed of material with defined composition and shape, can assemble, layer-by-layer, very complex components. ISM, thanks to its skills in deducing and modelling the laser-matter interaction processes, it is involved in research activities aiming to design new materials as well as determining the processes inducing the formation of defects. All activities and methodologies of research used in this field have highlighted that micro-structural and defect features are strongly connected to thermal gradients occurring during the AM’s process which can affect both, system and geometries to be developed and their specific application field.
The synthesis of π-conjugated thiophene-based systems and the structural and functional characterization of oligomers have broad prospects of development for several high-tech applications. The polymerization of these oligomers on metal surfaces both in monocristalline form or nanoparticles, represents a bottom-up strategy for the preparation of innovative materials for photonics, optoelectronics and nanotechnology in which ISM is involved. Specific charge transport properties in such systems are highly dependent on their morphology on the nanoscale and require accurate theoretical and experimental studies. In organic photovoltaics applications, for example, the materials are characterized in great detail by both the laser spectroscopy, with temporal resolution of fs (Pump & Probe), and the high resolution NEXAFS, XPS and PES spectroscopies with synchrotron radiation, in either solid or gaseous phase, using the facilities available in the institute or managed by the ISM at the synchrotron Elettra in Trieste. Optical measurements are assisted by ab initio simulations that describe the properties of atomic-scale systems and facilitate the interpretation of the resulting spectra.

Staff: Ambra Guarnaccio, Giuseppe Mattioi, Marcello Coreno, Cesare Grazioli, Monica de Simone (CNR-IOM), Antonio Santagata

Contact: ambra.guarnaccio@ism.cnr.it
Biomaterials for Tissue and Genetic Engineering

The aim of the research is the development of smart nanobiomaterials and systems for tissue and genetic engineering for biomedicine. New advanced design strategies for tissue regeneration and patients faster rehabilitation will be elaborated. Novel biomaterials – biomedical cements and coatings for bone implants – should improve the mechanical and biochemical characteristics of the damaged host hard tissue and, at the same time, stimulate the physiological environment. Among the various proposed biocompatible and/or resorbable materials, a particular attention is given to bioactive glass-ceramics and substituted calcium phosphates. Innovative glass-ceramic materials, used as scaffolds, cements and coatings, are able to form bonds with the host tissue, stimulating cells proliferation and differentiation and angiogenesis.

Staff: Julietta Rau, Marco Fosca, Valerio Graziani, Angela De Bonis, Adriana De Stefanis, Sara Laureti, Antonio Santagata, Roberto Teghil
Contact: giulietta.rau@ism.cnr.it
Liquidi Ionici: tecnologia ad alto impatto

I liquidi ionici (LI) sono composti formati da specie ioniche che sono liquide a 25°C. Questi solventi neoterici, a limitata impronta ambientale, sono estremamente versatili e trovano applicazioni in campi ad alto impatto.

Da anni il gruppo è attivo sulla razionalizzazione e ottimizzazione delle proprietà macroscopiche dei LI in termini delle loro caratteristiche micro- e meso-scopiche.

Esempi di applicazione dei LI sono:
- Trattamento delle biomasse (p.e. estrazione di aromi, dissoluzione di cellulosa e simili etc.);
- Cattura di gas (CO2, SO2 etc.)
- Estrazione di metalli pesanti (Hg, Cd, etc.)
- Sintesi ed estrazioni a basso impatto ambientale.

In questi settori, i LI riescono a fornire soluzioni tecnologiche più efficienti ed eco-sostenibili rispetto ad approcci più convenzionali.

Ionic Liquids: a high impact technology

Ionic Liquids (ILs) are composed solely of ionic species and are liquid at 25°C. These neoteric solvents show limited environmental footprint, are extremely versatile and find application in a wealth of high impact fields.

Since many years, our group is actively involved in R&D focused at rationalising and optimising ILs’ macroscopic properties in terms of their micro- and meso-scopic features.

Typical applications for ILs are:
- Biomass treatment (aroma extraction, cellulose dissolution etc.);
- Gas capture (CO2, SO2, etc.)
- Heavy metal extraction (Hg, Cd etc.)
- Synthesis and extraction at low environmental impact.

In these fields ILs promise to provide more efficient and eco-sustainable alternatives to conventional approaches.

Staff: Alessandro Triolo

Contact: alessandro.triolo@ism.cnr.it

Simulazione atomistica che descrive la co-presenza di composti ionici, alchilici e fluorurati in un liquido ionico.

Atomistic simulation describing the co-presence of ionic, alkylic and fluorinated compounds in a IL system.

Esempio della capacità dei LI di dissolvere cellulosa. (sin-> des): Cellulosa cristallina, LI puro e miscela omogenea di cellulosa nel LI.

Example of IL’s capability to fully dissolve cellulose. (Left->Right): cryst. Cellulose, neat IL and homogeneous mixture of Cellulose in IL.
Black Diamond Films

Black diamond films developed by ISM researchers represent an appealing new material obtained by the use of ultrashort laser pulses. They show outstanding capabilities of absorbing sunlight (up to 98%) at the same time maintaining all the peculiar charge transport properties for which CVD diamond is well-known. The very high solar absorptance is induced by a subwavelength surface texturing which in turn induces a significant increase of charge photogeneration at sub-bandgap photon energies. These properties enable black diamond to be legitimately considered to fall within the groundbreaking scientific topic of intermediate band semiconductors, interesting for PV applications.

The use of the extreme physical properties of CVD diamond combined to an active interaction with sunlight opens a broad range of solar applications requiring also operational capability at high temperature and resistance in harsh environments. In particular, our specific aim is to use black diamond for future high-temperature solar cells and efficient selective absorbers for solar concentrating systems.

Staff: A. Bellucci, M. Girolami, S. Orlando, R. Polini, V. Valentini, D.M. Trucchi
Contact: daniele.trucchi@ism.cnr.it

Microstructure of the black diamond surface responsible for the optical and electronic properties
Il diamante esibisce caratteristiche intrinsiche da semiconduttore che lo rendono il materiale ideale per la fabbricazione di dispositivi a stato solido per alta frequenza e/o alta potenza. L'idrogeno forma sulla superficie del diamante un dipolo che trasforma il suo comportamento da isolante in un conduttore di tipo p.

La natura peculiare del trasporto di carica indotto dall'idrogeno è tipico di un gas quasi bidimensionale di lacune, che permette lo sviluppo di dispositivi elettronici semplici dal punto di vista tecnologico e altamente performanti. Infatti, canali conduttivi di tipo p hanno permesso lo sviluppo di MESFET a canale superficiale con frequenze operative fino a 120 GHz. Il sistema diamante idrogenato può essere usato anche per produrre sensori di gas e sensori bioelettrochimici. Il pieno sfruttamento per applicazioni commerciali si basa sulla comprensione, a livello microscopico, del meccanismo alla base dell'aumento della conducibilità elettrica, che dipende strettamente dai dettagli della struttura elettronica, questione ancora oggi sfuggente.

Diamond exhibits intrinsic semiconducting characteristics that make it the ideal material for fabrication of high-frequency high-power solid state devices. Hydrogen on diamond surface forms a dipole that turns the diamond electrical insulating behavior into a p-type conductor. The peculiar nature of the H-induced charge transport is characteristic of a quasi 2D hole gas transport produced in a 3D semiconductor that enables the development of technologically-simple electronic devices characterized by very high performance. Indeed, p-type conducting channels led to develop surface-channel MESFETs with an operating frequency up to 120 GHz. The hydrogenated diamond system can also be used for producing high-performance gas and bio-electrochemical sensors. The full exploitation for commercial applications relies upon the understanding at a microscopic level of the basic mechanism enhancing the surface conductivity, strictly depending to details of the electronic structure that remains up to now elusive.

Staff: S. Iacobucci, P. Alippi, A. Bellucci, M. Girolami, D.M. Trucchi
Contact: stefano.iacobucci@ism.cnr.it

Ricostruzione dei dettagli della struttura elettronica del diamante idrogenato mediante metodi di simulazione e metodi sperimentali spettroscopici (angle-resolved photoelectron spectroscopy – ARPES @ Elettra)
Il progressivo esaurimento di risorse di energia presenti in natura ha innalzato l’attenzione verso la necessità di un uso razionale dell’energia stessa per un suo efficente “riciclaggio”. Ecco perché grandi sforzi sono rivolti al riutilizzo del calore residuo da processi industriali. Ciò ha indotto l’interesse per lo sviluppo di materiali termoelettrici efficienti, capaci di convertire il calore potenzialmente perso in energia elettrica.

L’ISM sta lavorando per migliorare le proprietà termoelettriche in un intervallo di temperatura tra 30 e 500 °C di differenti materiali calcogenuri (e.g. tellururi) e di antimoniuro di zinco, un materiale atossico, abbondante e a basso costo.

Lo sviluppo di strati sottili di materiali termoelettrici è in corso sia con tecniche standard, come il magnetron sputtering, sia mediante soluzioni avanzate, come la deposizione da laser pulsato al nanosecondo e al femtosecondo, in grado di nanostrutturare nativamente i materiali.

The progressive shortage of natural energy resources has raised to general attention the need for a rational use of energy itself and also, where possible, for its efficient recycling. That is why many efforts have been directed towards the possible re-use of waste heat from industrial processes. This triggered a great interest in the development of efficient thermoelectric materials, able to convert the heat potentially lost into electrical power.

ISM is working to improve the thermoelectric properties for applications in the range of temperatures of 30 - 500 °C of different chalcogenide materials (e.g. tellurides) as well as non-toxic, abundant, and low-cost zinc antimonide (ZnSb).

The development of thermoelectric thin-films is being carried out both with standard techniques like magnetron sputtering, and with advanced solutions like nanosecond or femtosecond laser pulsed deposition, natively nanostructuring the materials.
New emerging materials for lighting

The Eurofel Support Laboratory is equipped with a femtosecond laser system and with advanced spectroscopic techniques which allow the research team to investigate the ultrafast dynamics in many materials. These techniques are particularly interesting in the study of the dynamics of perovskites and polymers which form the basis of recently emerging organic solar cell and O-LED technologies. By measuring the ultrafast charge transfer and propagation in the first picoseconds after excitation it is possible to understand the mechanisms that regulate the efficiency of these devices and provide important information for the design of new and more efficient materials.

Staff: D. Catone, P. O’Keeffe, A. Paladini, F. Toschi, S. Turchini
Contact: francesco.toschi@ism.cnr.it
Micro-Nano Electronics
Il gruppo di ricerca del laboratorio EFSL (Eurofel Support Laboratory) sta lavorando su una serie di candidati per sensori avanzati. In particolare, l'utilizzo di nanostrutture metalliche come nanoantenne per la concentrazione di luce, permette un enorme aumento dell'efficienza di sensori spettroscopici standard come quelli basati su Raman (Surface Enhanced Raman Scattering - SERS) e assorbimento infrarosso (Surface Enhanced Infrared Absorption - SEIRA). Le tecniche di spettroscopia ultraveloce disponibili in EFSL consentono al gruppo di ricerca di ottimizzare tali sensori mediante l'uso di materiali innovativi quali nanofili decorati con nanoparticelle metalliche.

The Eurofel Support Laboratory research team is working on a number of candidates for advanced sensors. In particular, the use of metal nanostructures as nanoantennas for the concentration of light allows a huge increase in the efficiency of standard spectroscopic sensors such as those based on Raman scattering (Surface Enhanced Raman Scattering - SERS) and infrared absorption (Surface Enhanced Infrared Absorption - SEIRA). The ultrafast spectroscopic techniques available in the Eurofel Support Laboratory allow the research team to optimize such sensors by the use of novel materials such as nanoparticle decorated nanowires.

Staff: D. Catone, P. O’Keeffe, A. Paladini, F. Toschi, S. Turchini
Contact: alessandra.paladini@ism.cnr.it
Sensori nanomeccanici per sicurezza ambientale ed alimentare

Lo studio della sicurezza ambientale ed alimentare si sta indirizzando verso i dispositivi nanostrutturati grazie allo sviluppo di nuove tecnologie, capaci di determinare precocemente la presenza di inquinanti chimici o biologici. Tra questi dispositivi, i sensori nanomeccanici (NMS) stanno acquisendo una importanza crescente: grazie alla loro sensibilità e versatilità permettono di identificare rapidamente anche piccole concentrazioni di reagenti in ambiente liquido e in aria. Ad esempio, la presenza di molecole su una faccia di un NMS provoca una sua deflessione statica, la cui ampiezza dipende dal numero e proprietà delle stesse. Questo permette il riconoscimento di ppb di molecole target. Miniaturizzando e parallelizzando tali dispositivi, si possono sviluppare sistemi tecnologici per sensori trasportabili ed economici che possono determinare la presenza di contaminanti chimici in sistemi di interesse per l’industria agroalimentare, quali alimenti ed acque potabili.

Nanomechanical sensors for environmental and food safety

The field of environmental and food safety has recently moved towards the use of nanostructured devices, mainly due to new technologies capable of rapid determination of chemical and biological pollutants. Among these devices, the nanomechanical sensors (NMS) are growing in importance: due to their sensitivity and versatility they can be used to identify very small reagent concentrations in liquid or in air. For instance, the presence of molecules on one side of a NMS produces a static deflection of the system, whose amplitude depends on the concentration and kind of molecule attached. This allows the detection of ppb of target molecules in air environment. By miniaturizing and parallelizing these devices, new technological devise can be conceived, such as inexpensive and easily transportable sensors for applications in the detection of chemical pollutants in systems of interest for agribusiness safety, i.e. food and clean waters.

Staff: Marco Girasole, Giovanni Longo, Simone Dinarelli
Contact: giovanni.longo@ism.cnr.it
Elettronica molecolare

ISM is working on the preparation of organic semiconductors (π-conjugated oligothiophenes) interacting with metal surfaces for optoelectronic applications. These compounds are p-type semiconductors able to self-organize at the interface with the electrode to maximize the transport of charge in the final device. This is the key process for the development of molecular electronics representing a valid low-cost alternative to the traditional one. The work goes beyond the use of commercial organic semiconductors (e.g. the terthiophene, 3T). Particularly interesting is the synthesis of compounds such as 1,3-ditienilbenzo[c]thiophene (DTBT) and analogues, characterized by the presence of a condensed benzene ring to the oligothiophene, which allows large variations in the optical properties of the system. Recent ISM activities consist in the careful study of these electrode-semiconductor interfaces by means of conventional optical spectroscopy and synchrotron radiation, assisted by ab initio simulations at the atomic scale of the interface. Preliminary results for the DTBT/Ag system show that the oligothiophene-metal interaction processes play an extremely important role in pushing towards the formation of an ordered interface rather than the degradation of the semiconductor onto the electrode.

Staff: Ambra Guarnaccio, Giuseppe Mattioli, Antonio Santagata
Contact: ambra.guarnaccio@ism.cnr.it

Right: Surface-enhanced Raman spectroscopy (SERS) shows the fingerprint of polythiophene chains for 3T and a characteristic S–S stretching signal compatible with ring-opening processes for DTBT. Left: DFT results show that 3T is planar over the Ag surface; while, the central unit of DTBT forms a 12–15° angle with respect to the Ag surface.

Difference density maps (Δρ) calculated for: (left panels, top and side view) the 3T and (right panels, top and side view) DTBT interacting with the Ag (110) surface. Charge density flows from blue to red zones when the molecules interact with the Ag surface.
High-Temperature Solar Cells

High-temperature solar cells based on the exploitation of photon-enhanced thermionic emission (PETE) mechanism are under development at ISM. The advantages of the PETE devices are connected to the capability to overcome the limitations of traditional solar cells (even the more advanced multiple junction ones) when operating in solar concentrating systems. The characteristics of PETE converters actually are: a better operation at increasing temperatures and a more efficient (>50%) use of the solar photons by exploiting, along with the direct photogeneration of charge carriers in a semiconducting absorber, all thermalization effects and IR absorption as useful heat sources for thermionic emission. The cells developed by ISM include the black diamond technology as well as the innovative micrographitization of diamond, together with an advanced and original p-i-n structure. More detailed information can be found at www.prometheus-energy.eu.

Staff: A. Bellucci, M. Girolami, S. Orlando, R. Polini, V. Valentini, D.M. Trucchi
Contact: daniele.trucchi@ism.cnr.it

The resulting structures from the application on a diamond cathode structure of innovative technologies like black diamond, graphitic microstructuring, and emitting surface doping.

Black diamond high-temperature solar cell under characterization.
ST²G – Solar Thermionic-Thermoelectric Generator

Due sono le tecnologie attualmente utilizzate per convertire la radiazione solare concentrata: convertitori termodinamici che sfruttano l’elevata temperatura raggiunta da fluidi o gas (turbine, motori Stirling e/o Rankine) e celle fotovoltaiche ad alto rendimento (multi-giunzione). Entrambi i metodi hanno severe limitazioni in termini di scalabilità e problematiche tecnologiche. Il modulo sviluppato da ISM propone soluzioni per superare tali limitazioni, con la possibilità di lavorare ad elevate temperature (700-1000 °C) e sfruttare due effetti di conversione combinata: effetto termoionico e termoelettrico.

Il modulo di conversione è stato progettato e sviluppato per convertire l’energia solare concentrata in energia elettrica e termica (cogenerazione). Il diamante CVD e un nanotexturing superficiale sono le innovazioni di nanotecnologia applicate ai materiali del modulo, la cui efficienza di conversione in energia elettrica può superare il 30%. L’efficienza di conversione in energia termica è circa pari al 65% dell’energia termica residua.

Two main technologies are in use for concentrated solar radiation conversion: thermo-dynamic converters that use high temperature achieved by fluids or gases (turbines, Stirling and/or Rankine motors) and high-efficiency multi-junction photovoltaic cells. Both methods present technological problems and several strict limitations in terms of scalability. The conversion module developed by ISM suggests solutions to overcome such limitations, with the possibility to operate in a high temperature range (700-1000 °C) and to exploit two mixed conversion effects: thermionic and thermoelectric effects.

The conversion module was designed and developed to be housed in concentrated solar systems in order to generate electrical and thermal energies (co-generation).

CVD diamond films and surface nano-texturing are the nanotechnology innovations applied to the module materials. Electrical energy conversion efficiency can be > 30%. Thermal power output is about 65% of residual thermal power.

Staff: A. Bellucci, M. Girolami, S. Orlando, D.M. Trucchi
Contact: daniele.trucchi@ism.cnr.it
CVD Diamond Spectrometers for Charged Particles and Neutrons

Gli ambienti nucleari e i siti in cui la sicurezza è importante (i.e. aeroporti, porti navali, ecc.) necessitano di rivelatori sensibili capaci di misurare e riconoscere il tipo e l’energia della radiazione potenzialmente dannosa per la salute umana (particelle alfa e beta, neutroni veloci).

Gli spettrometri sviluppati basati su diamante CVD operano a temperatura ambiente (a differenza di rivelatori commerciali che hanno bisogno di raffreddamento per minimizzare il rumore) e hanno una efficienza di raccolta vicina al 100%, coerentemente a un’elevatissima sensibilità.

La risoluzione energetica è <1%, un valore che permette l’identificazione dell’energia della radiazione e, conseguentemente, il radioisotopo che l’ha emessa.

I test di irraggiamento con neutroni veloci, in collaborazione con CNR-IFP, hanno dimostrato una lunga durata e un’alta sensibilità sia per i pixel singoli sia per le matrici di rivelatori.

ISM ha un accordo commerciale e di sviluppo con CAEN Spa.

Nuclear environments as well as areas where security is paramount (i.e. airports, naval ports, etc.) need miniaturized sensitive detectors able to measure and recognize the kind and energy of radiation potentially dangerous for human health (alpha and beta particles, fast neutrons).

The CVD diamond-based spectrometers we develop, operate at room-temperature (commercial detectors need to be cooled to minimize electronic noise) and have a charge collection efficiency close to 100%, coherent with a very high sensitivity.

The energy resolution is <1%, that is a value able to allow determination of the impinging radiation energy and consequently of the radioisotope emitting it.

Irradiation tests with fast neutrons, in collaboration with CNR-IFP, demonstrated a high operating time and sensitivity both for single pixels and for detector matrices.

ISM has a commercial and development agreement with CAEN Spa.
Nano-Technology
Verso magneti di dimensione atomica

L’obiettivo della massima miniaturizzazione nel campo della memorizzazione magnetica dell’informazione e la possibile applicazione del magnetismo nei computer quantistici hanno portato l’attenzione della ricerca di base verso strutture di scala atomica, contenenti un numero sempre minore di atomi, caratterizzate da stati magnetici sufficientemente stabili da permettere il loro utilizzo come memorie magnetiche o come bit nel calcolo quantistico.

All’ISM di Trieste si studiano le proprietà magnetiche di singoli atomi e piccoli aggregati assorbiti su materiali con grande potenziale di applicazione tecnologica: il grafene e gli altri materiali bidimensionali, gli isolanti topologici. A tal fine, si utilizzano le tecniche attualmente più sensibili a nostra disposizione, quali la microscopia a scansione ad effetto tunnel e il dicroismo magnetico di raggi X, con cui possiamo determinare la stabilità dello stato magnetico nei sistemi studiati.

Towards atomic size magnets

The search for the ultimate size limit of magnetic information storage, and the aim of exploring magnetic quantum properties for information processing, have driven fundamental research towards atomic-scale structures that contain fewer and fewer atoms. Benchmarks for such systems are long magnetic relaxation times, leading to magnetic quantum states that are stable on the time scales required for storage or quantum computation.

At ISM Trieste we study the magnetic properties of individual atoms and small clusters adsorbed on materials with potentially high technological relevance, such as graphene and other 2D-materials, and topological insulators. We use the most sensitive techniques, such as scanning tunneling microscopy and x-ray magnetic dichroism, to study the stability of the magnetic state of the investigated systems.

Staff: Alessandro Barla
Contact: alessandro.barla@ism.cnr.it

Scambio magnetico tra singoli atomi o piccoli cluster di Cobalto e un cristallo di Nickel, mediato da un singolo strato di grafene.

Magnetic exchange between Cobalt individual atoms or small clusters and a Nickel crystal, mediated by a graphene layer.
Nanotechnology and health

Sensitizing molecules in radiotherapy.
Nanobiotechnologies are playing an increasingly important role in the diagnosis and therapy of diseases such as cancer. They allow early detection as well as the development of innovative strategies to selectively neutralize the diseased cells.

In cancer treatment ionising radiations are commonly used to kill the tumour cells. The use of "radiosensitising" molecules allows to increase the effectiveness of treatment and reduce the dose of radiation, limiting debilitating side effects for the patients. RNA/DNA bases functionalised with halogen atoms (F, Cl, Br, I), for example, are incorporated selectively in the genetic material of tumour cells, making them more vulnerable to radiation. Our studies aim to unravel the elementary mechanisms underlying these processes: a knowledge that provides a significant contribution to these challenges and will help to design new generation drugs.

Staff: Lorenzo Avaldi, Paola Bolognesi, Annarita Casavola.

Contact: paola.bolognesi@ism.cnr.it

The use of tunable radiation allows to selectively fragment a molecule. The example shows how the 2Br-pyrimidine molecule, used in radiosensitising drugs, produces different fragments depending on the orbital ionized.
Nano-bolle di grafene

Grazie all’ampio ventaglio di eccezionali proprietà il grafene presenta enormi potenzialità applicative. Tali applicazioni possono essere ulteriormente ampliate implementando opportune strategie d’ingegnerizzazione dello stress. La tecnologia qui presentata consente di produrre bolle di gas nobile intrappolate sotto una calotta di grafene ancorata ad un substrato di nichel. Le nano-bolle sono prodotte partendo dalla crescita del grafene sul nichel e successiva impiantazione ionica di Ar tra il substrato e il grafene. Un trattamento termico finale porta alla formazione delle nano-bolle di dimensioni inferiori a 10 nm.

L’elevata pressione del gas all’interno della bolla (centinaia di kbar) induce un’espansione della struttura reticolare del grafene (10 - 15 %) che forma la nano-bolla. Potenziali applicazioni di questa tecnologia sono l’ingegnerizzazione dello stress del grafene al fine di modularne le proprietà elettroniche o la reattività chimica. Opportune tecniche di trasferimento dal substrato potrebbero aprire la possibilità di produrre nano-dischi di grafene con una ridotta distribuzione di dimensioni.

Graphene nano-bubbles

Thanks to the wide range of its outstanding properties, graphene presents enormous potential technological applications. Such applications can be further expanded applying suitable strategies of stress engineering. The technology presented here allows producing noble gas nano-bubbles trapped below a graphene cap anchored to a nickel substrate. The nano-bubbles are produced starting from the graphene deposition on the nickel substrate and the subsequent low energy ion implantation of the Ar between the graphene layer and the nickel substrate. A final annealing leads to the formation of the nano-bubbles with a size smaller than 10 nm. The extremely high pressure of the gas inside the bubble (hundreds of kbar) induces a strain of the graphene lattice structure (10 - 15 %) capping the nano-bubbles.

Potential applications of this technology are the graphene stress engineering aimed at electronic properties and chemical reactivity modulation. Suitable transfer techniques from the substrate can be envisaged to produce graphene nano-disks with a narrow size distribution.

Staff: Fabio Ronci, Stefano Colonna, Roberto Flammini.
Contact: stefano.colonna@ism.cnr.it

Immagini al microscopio ad effetto tunnel delle nano-bolle ed il dettaglio della superficie di grafene.
Schema del modello della struttura.

Scanning tunneling microscopy images of the nano-bubbles and the detail of the graphene surface.
Model of the structure cross section.
Polimeri in due dimensioni con proprietà modulabili

La polimerizzazione di molecole funzionali sulle superfici è una strategia bottom-up molto promettente per costruire nuovi materiali alternativi al grafene. Questo metodo permette di controllare i parametri di superficie su scala nanometrica e può essere utilizzato per ottenere materiali con caratteristiche specifiche e per modulare le proprietà superficiali di materiali per un ampio spettro di utilizzi, come ad esempio nell’elettronica molecolare, nei sensori e per protezione superficiale. Attraverso la scelta appropriata sia del monomero, cambiandone gli atomi costituenti e la simmetria, sia della superficie è possibile ottenere polimeri con differenti geometrie e conseguente cambiamento delle caratteristiche del trasporto di carica elettrica nel dispositivo. Attualmente sono disponibili diversi metodi per ottenere la polimerizzazione su superfici sia all’interfaccia solido-liquido che in vuoto.

Two-dimensional polymers with tunable properties

The polymerization of functional molecules on surfaces is a very promising bottom-up strategy to build new alternative materials to graphene. This method allows to control the surface parameters at the nanoscale and can be used to obtain materials with specific characteristics and to modulate the surface properties of materials for a broad spectrum of applications, such as in molecular electronic, sensors and surface protection. Through the appropriate choice of both the monomer, by changing the constituent atoms and the symmetry, and the supporting surface, it is possible to obtain polymers with different geometries and a consequent change in the characteristics of the electric charge transport in the device. At present, several methods are available to produce polymerization on surfaces both at the solid-liquid interface and in vacuum.

Staff: Giorgio Contini, Daniele Catone, Stefano Turchini, Nicola Zema
Contact: giorgio.contini@ism.cnr.it
Diagnosi precoce dei tumori

La diagnosi precoce dei tumori sta diventando sempre più importante nella società moderna. L’accompagnamento di un microscopio ottico a scansione a sonda locale (SNOM) ad una sorgente infrarossa (IR) permette di ottenere immagini a contrasto chimico nella regione infrarossa tra 2 e 10 micron. In questa regione dello spettro, si osservano con un’alta risoluzione spaziale le variazioni di distribuzione dei legami chimici all’interno della cellula. La tecnica SNOM-IR serve per analizzare i tessuti biologici identificandone eventuali alterazioni chimiche e biomolecolari associate a lesioni precancerose, con l’obiettivo di individuare precoce e con alta risoluzione lo spazio tra i tessuti normali e i tumori.

La metodica è stata applicata con successo per il riconoscimento delle differenze chimiche tra cellule normali e malate dell’esofago e del collo dell’utero. In questo caso si è utilizzata la sorgente laser ad elettroni liberi di Daresbury. Nuovi laser a cascata quantica che coprono lo stesso range di energia sono in corso di utilizzo per ottenere risultati su altri tipi di tumore.

Staff: Antonio Cricenti, Mario D’Acunto, Innocenzo Sammarco, Olivia Pulci, Marco Luce, Marco Ortenzi, Massimiliano Rinaldi

Contact: antonio.cricenti@ism.cnr.it

Early diagnosis of cancer

Early detection of cancer is becoming increasingly important in modern society. The coupling of a scanning near-field optical microscope (SNOM) to a source of infrared (IR) allows to obtain chemical contrast images in the infrared region between 2 and 10 microns. On this range of the spectrum, the changes in the distribution of chemical bonds within the cell are observed with high spatial resolution. The SNOM-IR technique is used to analyze biological tissues identifying any chemical and biomolecular alteration associated with precancerous lesions, with the aim of early detection of the appearance of the tumor. The method was successfully applied to the recognition of chemical differences between normal and diseased cells of the esophagus and cancer of the cervix. In this case the free electrons laser source of Daresbury has been used. New quantum cascade lasers that cover the same energy range are being used to obtain results on other cancers.

Staff: Antonio Cricenti, Mario D’Acunto, Innocenzo Sammarco, Olivia Pulci, Marco Luce, Marco Ortenzi, Massimiliano Rinaldi

Contact: antonio.cricenti@ism.cnr.it

Analisi a cluster di immagini SNOM infrarosse di campioni di controllo e tumorali
Cluster analysis of SNOM infrared images of control and cancer samples
Il gruppo di ricerca del laboratorio EFSL (Eurofel Support Laboratory) ha coniugato la sua esperienza nel campo dell’ottica ultraveloce con la manipolazione dei nanomateriali attraverso processi plasmonici, con lo scopo di indagare e sviluppare nuovi metodi innovativi di nanofabbricazione. L’approccio sperimentale consiste nell’utilizzare i laser ultraveloci per riscaldare termicamente sistemi di nanoparticelle di metalli di transizione e guidarne in maniera controllata la loro fusione con lo scopo di creare nuove nanostrutture. Questo nuovo campo della termoplasmonica porterà certamente allo sviluppo di nuove tecniche di nanofabbricazione con applicazioni innovative in campi molto diversi, come i metamateriali, i sensori, la catalisi, la terapia fototermica, substrati per spettroscopie di superficie e per l’ottica non lineare.

Staff: D. Catone, P. O’Keeffe, A. Paladini, F. Toschi, S. Turchini
Contact: patrick.okeeffe@ism.cnr.it

Nanofabrication, Thermoplasmonics and Ultrafast Laser
The Eurofel Support Laboratory research team has been combining its expertise in ultrafast optics with the manipulation of nanomaterials through plasmonics to investigate and develop novel new methods of nanofabrication. The basis of the approach is to use the ultrafast laser to thermally heat metal nanoparticles and to guide their melting in a controlled form to create new nanostructures. This new field of thermoplasmonics will certainly lead to the development of new nanofabrication techniques with applications in many different fields including metamaterials, sensors, catalysis, photothermal therapies, substrates for surface enhanced spectro-scopies and substrates for non-linear optics.
Misurare l’indurimento superficiale di materiali metallici

Questa tecnologia, oggetto di un brevetto, consiste in una indagine ottica di superfici di metalli o leghe metalliche per determinare la formazione di nanoparticelle. La loro presenza induce una modifica nello spettro vis/NIR aumentando la pendenza spettrale in specifiche regioni ed è associata ad una transizione di fase con formazione di martensite ed all’indurimento del materiale. Questo è importante per diversi processi industriali e questa tecnica permette di monitorare l’indurimento in real time ed effettuare, anche in remoto e su un’intera linea di produzione, un controllo di qualità senza i limiti di analisi distruttive o a campione. L’impiego della tecnologia, si presta alla costruzione di strumenti per la misura di durezza superficiale con evidenti vantaggi in semplicità, economicità ed adattabilità a linee di produzione. L’analisi è limitata dalla penetrazione della luce che, per i metalli, è dell’ordine di qualche micron, dunque la misura produce essenzialmente un’analisi d’indurimento superficiale dei materiali.

Measuring the surface stiffening of metallic materials

This technology has been patented as a technique to study by optical means the formation of nanoparticles in metallic surfaces or alloys. The presence of nanoparticles modifies the vis/NIR spectrum, affecting particular spectral regions. The formation of nanoparticles is particularly important because it is associated to a phase transition of the metal towards a martensitic structure and produces stiffening of the metal. This latter is important for several industrial purposes and could lead to real-time monitoring of metal stiffening process directly in-situ in the production line and to a quality control overcoming the limitations of destructive and random sampling. The use of this technology will lead to the development of tools to measure the surface stiffness, with advantages in terms of ease of use, cost and versatility. The main limitation is the penetration of light inside the material that, for metals, is typically a few microns. This makes the analysis basically an investigation of surface stiffening.

Staff: Marco Girasole, Giovanni Longo, Simone Dinarelli, Pierfrancesco Moretti
Contact: marco.girasole@ism.cnr.it

Il processo di indurimento di un acciaio, o di altro materiale metallico, mediato dall’induzione di nanoparticelle può essere monitorato in real time ed in modo non distruttivo seguendo l’evoluzione dello spettro vis/NIR

The hardening process of a steel, or any metal-containing material, is mediated by induction of a nanostructured phase. The entire process can be followed in real time by monitoring the changes in the vis/NIR spectra of the material.
Rapporto tra alimentazione e salute valutato attraverso gli eritrociti

L'alimentazione ha spesso conseguenze sulla salute che dipendono dall'induzione di alterazioni alla struttura cellulare, soprattutto della membrana plasmatica. In questo contesto gli eritrociti, le principali cellule del sangue, costituiscono dei sistemi modello ideali per il monitoraggio delle conseguenze degli squilibri alimentari.

Le moderne tecniche di microscopia a scansione, tra cui l'AFM, consentono di analizzare quantitativamente la morfologia anche di singoli eritrociti, di correlarla con l'integrità della struttura cellulare e di misurarne le proprietà biomecaniche che risultano anomale in presenza di stati patologici. I parametri morfometrici possono essere correlati con l'analisi dei principali percorsi metabolici cellulari fornendo una panoramica completa del funzionamento e dello stato di salute cellulare. Questo insieme di competenze tecniche, metodologiche e scientifiche può essere applicato nello studio della relazione tra nutrizione e salute in diversi contesti fisiologici (invecchiamento) e patologici (metabolici imbalanci, intolleranze, allergie, difetti enzimatici e malattie del sangue).

Correlation between nutrition and health through the study of erythrocytes

Nutrition often has consequences on health, in terms of metabolic activity and physiology, that can be correlated to alterations induced at the level of the cellular structure and particularly to the plasmatic membrane. In this framework, erythrocytes, the most abundant among blood cells, are ideal model systems to monitor the consequences of inadequate dietary regimes. Modern scanning probe microscopies, such as AFM, allow a quantitative characterization of single erythrocytes, which correlates it with the overall cellular integrity, in order to measure the cellular biomechanic properties that are altered in presence of pathologies. The morphometric parameters can be correlated with the main metabolic pathways, producing a complete overview of the cellular status and health.

This set of technical, methodological and scientific capabilities can be applied to the determination of the effect of nutrition and health in various physiological (ageing) and pathologic conditions (metabolic imbalance, intolerances, allergies, enzymatic deficiencies and blood diseases).

Staff: Marco Girasole, Giovanni Longo, Simone Dinarelli
Contact: marco.girasole@ism.cnr.it

Lo studio di morfologia ed arrangiamento della membrana degli eritrociti eseguito con microscopie quantitative può rivelare sofisticate informazioni sullo stato di salute e funzionalità della cellula e dell'intero organismo.

The study of erythrocytes morphology and membranes arrangement performed with quantitative microscopies can reveal precious information on the health and functionality of the single cells as well as of the whole body.
Nano-Technology

Sensori nanomeccanici per applicazioni biomediche

Lo sviluppo di nuovi sensori sta indirizzando il campo della biomedicina verso dispositivi nanostrutturati, capaci di studiare sistemi biologici anche molto complessi in maniera innovativa. Tra questi dispositivi, i sensori nanomeccanici (NMS) stanno acquisendo una importanza crescente, con applicazioni che spaziano dalla microbiologia allo studio di cellule o alla biologia molecolare. La loro versatilità ha permesso di sviluppare dispositivi trasportabili e economici che possono essere applicati a problematiche biomediche. Ad esempio, con la modalità innovativa detta nanomotion sensor, si possono tradurre in segnali misurabili in segnali naturali movimenti sulla nanoscala associati alla biomotilità cellulare. Tale segnale, è caratteristico del biosistema sotto indagine ed è correlabile al suo stato metabolico, fornendo un nuovo, sensibile strumento diagnostico applicabile in una varietà di contesti scientifici che includono i biosensori, la diagnosi cellulare, microbiologia, oncologia, ma anche la bio- e meccano-trasduzione.

Staff: Longo Giovanni, Marco Girasole, Sandor Kasas, Simone Dinarelli.
Contact: giovanni.longo@ism.cnr.it

Nanomechanical sensors for biomedical applications

The development of novel sensors is leading the biomedical field towards the use of nanostructured devices, capable of the monitoring of complex biological systems in innovative ways. Among these devices, nanomechanical sensors (NMS) are increasing in importance, with applications ranging from microbiology to cellular or molecular biology. Such versatility has produced inexpensive and transportable devices that can be used to solve biomedic issues. For instance, the new modality named nanomotion sensor allows transducing in measurable signals the nanoscale movements associated with living systems. Such signal is characteristic of the specific biosystem under investigation and can be correlated to its metabolic status. In this way we have a new sensitive diagnostic tool that can be applied to many different scientific issues, as biosensors, for cellular diagnosis, microbiology, oncology and even to study bio- and mecanotransduction.

Schema di funzionamento di un NMS in modalità nanomotion sensor: un sistema biologico vivo viene fatto aderire ad un NMS ed i suoi movimenti provocano fluttuazioni misurabili del sensore. Tali fluttuazioni indicano lo stato metabolico del sistema biologico.

Schema di possibile miniaturizzazione e parallelizzazione di diversi NMS in una scheda per lo screening, ad esempio, di diversi batteri o cellule esposte a diversifarmaci o antibiotici.
Nanostrutture per Elettronica Organica

L’ISM realizza e caratterizza con risoluzione sub-molecolare nuove nanoarchitetture a base di materiali organici per dispositivi elettronici. Il futuro delle nanotecnologie organiche richiede molecole dalle caratteristiche flessibili, la cui reciproca interazione induca ordine inaspettato e imprevedibili fenomeni collettivi su scala micrometrica. Utilizziamo metallo-ftalocianine (M-Pc) per dar forma a interfacce organico-inorganico in cui le proprietà di tali molecole (switch isomerici, chiralità, magnetismo) possano essere sfruttate per la realizzazione di film sottili su substrato metallico o semiconduttore dotati di proprietà ottiche, magnetiche o di trasporto di carica uniche. Le attività recenti includono la TiO-Pc depositata su argento, dove la forte interazione tra dipoli Ti-O guida la formazione dell’interfaccia, e la Ru-Pc depositata su elettrodi metallici rivelati da grafene, dove la formazione spontanea di pilastri molecolari ad alta conducibilità migliora l’iniezione di carica elettrodo-semiconduttore.

Organic Electronics Nanoarchitectures

ISM activities focus on the realization and sub-molecular characterization of new nanoarchitectures for organic electronics. The future of organic nanomaterials requires flexible molecules, whose reciprocal complex interactions create unexpected order and unpredictable collective phenomena up to the microscale. We use metal-phthalocyanine (M-Pc) molecules to shape inorganic-organic interfaces in which the special properties of such molecules (e.g., switchable isomerism, chirality, magnetism) can be exploited to set up organic thin films deposited on metal or semiconductor substrates having unique optical, magnetic or transport features. Our recent activities include TiO-Pc deposited on silver, where a strong interplay between Ti-O axial dipoles drives the formation of the interfacial layer, and Ru-Pc deposited on graphene-coated metal electrodes, where the formation of highly-conductive molecular pillars can boost charge injection from metal electrodes into the organic semiconductor.

Staff: G. Mattioli, P. Alippi, F. Filippone, R. Larciprete (ISC-CNR) A.M. Paoletti, G. Pennesi, F. Ronci, G. Zanotti, S. Colonna

Contacts: giuseppe.mattioli@ism.cnr.it

Immagine STM e simulazione ab initio dell’interfaccia con proprietà chirali formata da titanile ftalocianina depositata su argento.
Tecnologie laser per le nanoscienze

Le proprietà della materia nell’intervallo dimensionale di un nanometro \((10^{-9} \text{m})\) fino alla frazione del micrometro \((<10^{-6} \text{m})\) sono studiate dalle nanoscienze. La versatilità delle tecnologie laser consente sia la realizzazione di nuovi materiali e sistemi che la loro caratterizzazione per l’uso in dispositivi nanometrici. Il personale della sede ISM di Tito Scalo (PZ) con le attività ventennali svolte sull’interazione laser-materia ha maturato competenze per lo sviluppo di nuovi materiali nanostrutturati per la micro- e nano-elettronica, fotonica, sensoristica ambientale chimico-fisica e biosensoristica utilizzando laser pulsati al nano- e al femtosecondo. Le attività di ricerca riguardano la produzione e trattamento superficiale di materiali tramite Pulsed Laser Ablation (PLA) and Deposition (PLD), Pulsed Laser Ablation in Liquid (PLAL), Laser Micromachining, Matrix Assisted Pulsed Laser Evaporation, nonché la caratterizzazione di processo e dei materiali tramite immagini ICCD, spettrosopia LIBS e MOKE e spettroscopia ad alta risoluzione temporale in fluorescenza (TCSPC, Up-conversion) e di assorbimento transiente (Pump and Probe).

Staff: P. Dolce, A. Guarnaccio, D. Conte, D. Mollica, A. Morone, S. Orlando, G.P. Parisi, A. Santagata

Contact: antonio.santagata@ism.cnr.it

Laser technologies for nanosciences

The properties of matter having dimension between nanometer \((10^{-9} \text{m})\) and submicrometer \((<10^{-4} \text{m})\) are surveyed by nanosciences. The high versatility of the laser technologies allow one to realize both new materials and systems, and characterize their features for applications in nanoscaled devices. During the last twenty years the personnel of the Unit of Tito Scalo (PZ) of ISM has attained skills in developing new nanostructured materials for micro- and nanoelectronics, photonics, physical-chemical sensors as well as biosensors taking advantage of their knowledge about the use of nano- and femto-second laser pulses. The research activities are related both to production and surface treatment of materials by Pulsed Laser Ablation (PLA) and Deposition (PLD), Pulsed Laser Ablation in Liquid (PLAL), Laser Micromachining and Matrix Assisted Pulsed Laser Evaporation. Moreover, the characterization of the process or the materials are performed through ICCD-imaging, LIBS and MOKE spectroscopy, and highly temporal resolved spectroscopies (TCSPC, Up-conversion) and transient absorption (Pump and Probe).

Staff: P. Dolce, A. Guarnaccio, D. Conte, D. Mollica, A. Morone, S. Orlando, G.P. Parisi, A. Santagata

Contact: antonio.santagata@ism.cnr.it

Microtubi di rutile ottenuti per auto-assemblaggio di nanoparticelle prodotte per ablazione laser al fs di Ti in acqua.

Immagine ICCD risolta spettralmente del plasma indotto in un’analisi fs-ns DP-LIBS.
Nanoparticelle per la sensoristica

I materiali con dimensioni nanometriche (10^-9 m), come appunto le nanoparticelle (NPs), presentano proprietà ottiche che dipendono dalla loro dimensione e forma. Nelle NPs di metalli nobili l’azione di una radiazione UV-Vis determina un’eccitazione collettiva di elettroni (plasmon) definita Risonanza Plasmonica Localizzata Superficiale (LSPR) la cui frequenza di risonanza dipende dalle proprietà morfologiche delle NPs. Tale frequenza può tuttavia subire un cambiamento variando lo stato di aggregazione delle NPs o l’indice di rifrazione della materia che le circonda. Le NPs, possono così essere sfruttate come sensori in grado di rilevare in modo altamente selettivo e sensibile la presenza di specifiche sostanze da rilevare (analiti) che possono determinare cambiamenti delle loro proprietà ottiche. In tale contesto l’ISM svolge attività di ricerca e sviluppo sia sulla generazione di NPs per la sensoristica chimica, ambientale e biosensoristica che nella caratterizzazione delle loro proprietà con tecniche microscopiche e spettroscopiche ad alta risoluzione spaziale (HR-TEM) e temporale (femtosecondo) sia in fluorescenza (TCSPC e Up-conversion) che in assorbimento (Pump&Probe).

Nanoparticles for sensors

Materials having dimensions of nanometers (10^-9 m) such as Nanoparticles (NPs), show optical properties which are related to their size and shape. NPs of metals display a collective electronic excitation (plasmon) when an UV-Vis radiation interacts with them. This effect is named Localized Surface Plasmon Resonance (LSPR) where the resonant frequency is tightly depending on the morphological properties of the NPs. Such resonant frequency can be tuned changing either the NPs’ aggregation or the refraction index of the medium surrounding them. Consequently, the NPs can be successfully employed as sensors able to detect, in a highly selective and sensitive manner, the presence of specific target compounds (analytes) by displaying a variation on the NPs’ optical properties. In this framework, the ISM is developing research activities on NPs’ generation for chemical, environmental sensors and biosensors, and on their characterization features. With this aim, microscopic and spectroscopic techniques with high spatial (HR-TEM) and temporal resolution (femtosecond) both in fluorescence (TCSPC and Up-conversion) and in absorption (Pump&Probe) are, respectively, used.

Staff: A. Guarnaccio, D. Mollica, A. Morone, S. Orlando, G.P. Parisi, A. Santagata
Contact: antonio.santagata@ism.cnr.it
Chiralita’ molecolare e superfici

La struttura chirale di molecole e di sistemi supramolecolari riveste importanza notevole nei campi della chimica, della biologia e della fisica. L’industria farmaceutica e quella agroalimentare presentano una crescente domanda di prodotti chiral di base per migliorare l’efficacia, la sicurezza sulla salute e l’ottimizzazione della resa finale del prodotto.

Le metodologie di indagine spettroscopica e strutturale per questo tipo di molecole utilizzano radiazione circolarmente polarizzata e la dispersione ottica rotatoria ed il dicroismo circolare per gli studi di caratterizzazione elettronica e strutturale delle molecole stesse. Recentemente si è sviluppato un crescente interesse nella deposizione di molecole chiral su superfici di metalli e semiconduttori, e i loro processi di self-assembling, per applicazioni in campi come l’ottica non-lineare e il riconoscimento molecolare.

In questo caso il riconoscimento molecolare espresso a livello chimico o biologico dal sistema molecola/superficie o dall’interfaccia chirale sono fenomeni di interesse nei campi della catalisi stereospecifica, della sensoristica.

Molecular induced chirality on surfaces

The chiral properties of molecules and supramolecular systems play a fundamental role in the field of chemistry, physics, and biology. Pharmaceutical applications and food market increasingly require pure basic chiral molecules in order to improve the safety of their industrial products.

Standard spectroscopic and structural investigations on these materials need circularly polarized radiation applied to Optical Rotatory Dispersion and Circular Dichroism to characterize their electronic and structural properties. Recently, adsorption of chiral molecules on metal and semiconductor surfaces and their self-assembling processes are becoming a well established field with application in non-linear optical technology and molecular recognition.

In particular, systems showing surface chirality attract special attention in chemistry and biology because of specific selectivity of the chiral interface at the molecule/surface system opening important applications for enantioselective reactions in enantiomeric catalysis and sensors fields.

Staff: Giorgio Contini, Daniele Catone, Stefano Turchini, Nicola Zema

Contact: nicola.zema@ism.cnr.it

The Alaninol molecules forms almost squared tetrameric units that self-organizes chirally on the Cu(100).

La molecola di Alaninolo forma unità tetrameriche che si auto organizzano sulla superficie Cu(100) in modo chirale.

ARPES with circular polarized synchrotron radiation gives a fingerprint of the chirality of the electronic states of the system Alaninol/Cu(100).

La fotoemissione angolare dalla banda di valenza del sistema Alaninol/Cu(100) mostra la chiralita’ degli stati elettronici del sistema.
INDICE / SUMMARY

Introduzione/Introduction

Advanced Materials

Nanoparticelle Magnetiche
Magnetic Nanoparticles ...1

Film e Eterostrutture Magnetiche
Magnetic Films and Heterostructures ..2

Nanotubi di Carbonio e Grafene
Carbon Nanotubes and graphene ...3

Nanoparticelle come nuovi sensori ultra-sensibili
Nanoparticles as ultra-responsive sensor devices4

Fotosintesi Artificiale
Artificial Photosynthesis ..5

Elettroni nei nanomateriali
Electrons in nanomaterials ..6

Studi in-situ di celle solari organiche
In situ studies of organic solar cells ..7

Nuovi Coloranti “Smart”
New Smart Dyes ..8

Additive-Manufacturing di metalli
Additive-Manufacturing of metals ..9

Fotovoltaico Organico
Organic Photovoltaics ...10

Biomateriali per Ingegneria Tissutale e Genetica
Biomaterials for Tissue and Genetic Engineering11

Liquidi Ioniici: tecnologia ad alto impatto
Ionic Liquids: a high impact technology12

Black Diamond Films ...13

2D Transport of Hydrogenated Diamond Films14

Thin-films for Thermoelectric Power Generation15

Nuovi materiali emergenti per l’illuminazione
New emerging materials for lighting ..16

Micro-Nano Electronics

Nanoantenne per sensori spettroscopici ad alta efficienza
Nanoantennas for high efficient spectroscopic sensors19

Sensori nanomeccanici per sicurezza ambientale ed alimentare
Nanomechanical sensors for environmental and food safety20

Elettronica molecolare
Molecular electronics ..21

High-Temperature Solar Cells ..22

ST2G – Solar Thermionic-Thermoelectric Generator23

CVD Diamond Spectrometers for Charged Particles and Neutrons24
Nano-Technology

Verso magneti di dimensione atomica
Towards atomic size magnets ...27
Nanotecnologie e salute
Nanotechnology and health ...28
Nano-bolle di grafene
Graphene nano-bubbles ...29
Polimeri in due dimensioni con proprietà modulabili
Two-dimensional polymers with tunable properties30
Diagnosi precoce dei tumori
Early diagnosis of cancer ...31
Nanofabbricazione, Termoplasmonica e Laser Ultraveloce
Nanofabrication, Thermoplasmonics and Ultrafast Laser32
Misurare l’indurimento superficiale di materiali metallici
Measuring the surface stiffening of metallic materials33
Rapporto tra alimentazione e salute valutato attraverso gli eritrociti
Correlation between nutrition and health through the study of erythrocytes34
Sensori nanomeccanici per applicazioni Biomediche
Nanomechanical sensors for biomedical applications35
Nanostrutture per Elettronica Organica
Organic Electronics Nanoarchitectures ...36
Tecnologie laser per le nanoscienze
Laser technologies for nanosciences ...37
Nanoparticelle per la sensoristica
Nanoparticles for sensors ...38
Chiralita’ molecolare e superfici
Molecular induced chirality on surfaces ..39
Istituto di Struttura della Materia
www.ism.cnr.it

Area della Ricerca di Roma 2, Tor Vergata
via del Fosso del Cavaliere, 100
00133 Roma, Italia
Tel: +39 06 45488173, +39 06 45488476
Fax: +39 06 45488158
e-mail: direttore@ism.cnr.it
posta certificata: protocollo.ism@pec.cnr.it

Sede Secondaria di Montelibretti
Area della Ricerca di Roma 1, Montelibretti
via Salaria km 29,300, C.P. 10
00015 Monterotondo (RM), Italia
Tel: +39 06 990672229, +39 06 90672234
Fax: +39 06 90672316

Sede Secondaria di Tito Scalo
Area della Ricerca di Potenza
C.da S. Loja - Zona Industriale, C.P. 27
85050 Tito Scalo (PZ), Italia
Tel: +39 0971 427317, +39 0971 427228
Fax: +39 0971 427323

Sede Secondaria di Trieste
c/o Area Science Park
Strada Statale 14, km 163,5
34012 Basovizza (TS), Italia
Tel: +39 040 9220167
Fax: +39 040 226870